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McCulloch-Pitts neuron: binary threshold
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McCulloch-Pitts neuron: binary threshold
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Neural nets and the brain
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• Neural nets are composed of networks of computational models of 
neurons called perceptrons
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The perceptron
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Reminder: Linear Classifiers

§ Inputs are feature values
§ Each feature has a weight
§ Sum is the activation

§ If the activation is:
§ Positive, output +1
§ Negative, output -1
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Learning the perceptron
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• Given a number of input output pairs, learn the weights and
bias

– Learn 𝑊 = 𝑤!, … , 𝑤" # and b, given several 𝒙, 𝑦 pairs
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Perceptron Algorithm: Summary
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• Cycle through the training instances

• Only update 𝒘 on misclassified instances

• If  instance misclassified:
– If instance is positive class

𝒘 = 𝒘 + 𝒙($)

– If instance is negative class

𝒘 = 𝒘 − 𝒙($)



Perceptron vs. Delta Rule
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• Perceptron learning rule:
• guaranteed to succeed if training examples are linearly 

separable

• Delta rule:
• guaranteed to converge to the hypothesis with the minimum 

squared error
• can also be used for regression problems

𝒘 = 𝒘 + 𝜂(𝑦(') −𝒘#𝒙('))𝒙(')



How to get probabilistic decisions?
• Activation:
• If 𝑧 = 𝒘!𝒙 very positive à want probability going to 1
• If 𝑧 = 𝒘!𝒙 very negative à want probability going to 0

• Sigmoid function

�(z) =
1

1 + e�z
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Logistic regression

Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

= Logistic Regression
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Multi-class logistic regression

• Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

= Multi-Class Logistic Regression
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Softmax activation function
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• Softmax vector activation is often used at the output of multi-
class classifier nets

𝑧, = 2
-

𝑤-,
(.)𝑎-

('/!)

𝑜, =
exp(𝑧,)
∑- exp(𝑧-)

• This can be viewed as the probability 𝑜O = 𝑃 𝑐𝑙𝑎𝑠𝑠 = 𝑖 𝒙

𝑧$



Batch Gradient Ascent on the Log Likelihood 
Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

• init

• for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)
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Stochastic Gradient Ascent on the Log 
Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

• init

• for iter = 1, 2, …
• pick random j

w

w  w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one
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Mini-Batch Gradient Ascent on the Log 
Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

• init

• for iter = 1, 2, …
• pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch) 
can be computed, might as well do that instead of a single one

w  w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)
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Limitation of single layer network
• Single layer networks is equivalent to template matching
• Weights for each class as a template for that class.

• The ways in which a digit can be written are much too 
complicated to be captured by simple template

• Thus, networks without hidden units are very limited in 
the mappings that they can learn
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The history of Perceptron
• They were popularized by Frank Rosenblatt in the early 1960’s.
• They appeared to have a very powerful learning algorithm.
• Lots of grand claims were made for what they could learn to do.

• In 1969, Minsky and Papert published a book called 
“Perceptrons” that analyzed what they could do and showed 
their limitations.
• Many people thought these limitations applied to all neural network 

models.
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What binary threshold neurons cannot do

• A binary threshold output unit cannot even tell if two single 
bit features are the same!

• A geometric view of what binary threshold neurons cannot do
• The positive and negative cases cannot be separated by a plane
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Neural Networks
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Networks with hidden units
• Networks without hidden units are very limited in the 

input-output mappings they can learn to model.
• More layers of linear units do not help. Its still linear.
• Fixed output non-linearities are not enough.

• We need multiple layers of adaptive, non-linear hidden 
units. But how can we train such nets?
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The multi-layer perceptron
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• A network of perceptrons
– Generally “layered”



The multi-layer perceptron
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N.Net

• Inputs are real or Boolean stimuli
• Outputs are real or Boolean values

– Can have multiple outputs for a single input
• What can this network compute?

– What kinds of input/output relationships can it model?



Linear model
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Multi-layer Neural Network
ϕ:	fixed	activation	function

Examples:

ϕ 𝑧 = max 0, 𝑧

ϕ 𝑧 =
1

1 + 𝑒&'
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&'(

)
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Multi-layer Neural Network
ϕ:	fixed	activation	function

Examples:
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MLP with single hidden layer
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• Two-layer MLP (Number of layers of adaptive weights is counted)
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• Thus, we don’t need expert knowledge or time consuming tuning of hand-
crafted features
• The form of the nonlinearity (basis functions 𝑓%) is adapted from the training data
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Multi-class Logistic Regression
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= special case of neural network



Deep Neural Network = Also learn the 
features!
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Deep Neural Network = Also learn the 
features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3

…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT )
1

z(OUT )
2

z(OUT )
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

31

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j ) 𝜙 = nonlinear activation function𝜙



Neural Networks Properties
• Theorem (Universal Function Approximators).  A two-

layer neural network with a sufficient number of neurons 
can approximate any continuous function to any desired 
accuracy.

• Practical considerations
• Can be seen as learning the features 

• Large number of neurons
• Danger for overfitting
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Universal Function Approximation 
Theorem*

• In words: Given any continuous function f(x), if a 2-layer neural 
network has enough hidden units, then there is a choice of 
weights that allow it to closely approximate f(x). 

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can 
Approximate Any Function”
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MLP Universal Approximator

34

• A feed-forward network with a single hidden layer and linear 
outputs can approximate any continuous function on a 
compact domain to an arbitrary accuracy
• under mild assumptions on the activation function

• e.g., sigmoid activation functions (Cybenko,1989)

• when sufficiently large (but finite) number of hidden units is used

• It is of greater theoretical interest than practical
• the construction of such a network requires the nonlinear activation 

functions and weight values which are unknown

𝐹1 𝑥 =2
-2!

3
𝑤1-
[$] 𝜙 2

,20

"
𝑤-,
[!]𝑥,



MLPs approximate functions
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• MLP s can compose Boolean functions

• MLPs as universal classifiers

• MLPs as universal approximators (of real-valued functions)



AND & OR networks
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The perceptron is not enough
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X ?

?
?

• Cannot compute an XOR

Y



XOR example
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𝑓 = 𝑋𝑂𝑅 𝑥U, 𝑥V = 𝑂𝑅 𝐴𝑁𝐷 𝑥U, 𝑥̅V , 𝐴𝑁𝐷 𝑥̅U, 𝑥V

Input variables that are True are considered as 1 and False ones 
as -1

−0.5
𝑥!

𝑥$



General Boolean functions
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• Every Boolean function can be represented by a network 
with a single hidden layer
1. Consider the truth table of the Boolean function
2. Write Boolean function as OR of ANDs, with one AND for 

each positive entry in the truth table.  
3. Construct a 2-layer network that is composed of OR of 

ANDs (first layer contains ANDs and second layer contains 
OR)

• It might need an exponential number of hidden units 



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

Truth table shows all input combinations  
for which output is 1

• Expressed in disjunctive normal form

y = '𝑋' '𝑋(X)X* '𝑋+ + '𝑋'X( '𝑋)X*X+ + '𝑋'X(X) '𝑋* '𝑋++
X' '𝑋( '𝑋) '𝑋*X+ + X' '𝑋(X)X*X+ + X'X( '𝑋) '𝑋*X+

X" X# X% X&X!



How many layers for a Boolean MLP?
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X1 X2 X3 X4 X5 Y
0 0 1 1 0 1
0 1 0 1 1 1
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1

Truth Table

• Any truth table can be expressed in this manner!
• A one-hidden-layer MLP is a Universal Boolean Function
• But what is the largest number of perceptrons required in the  

single hidden layer for an N-input-variable function?

y = X𝑋! X𝑋$X*X6 X𝑋7 + X𝑋!X$ X𝑋*X6X7 + X𝑋!X$X* X𝑋6 X𝑋7+
X! X𝑋$ X𝑋* X𝑋6X7 + X! X𝑋$X*X6X7 + X!X$ X𝑋* X𝑋6X7

X" X# X% X&X!



MLPs approximate functions
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• MLP s can compose Boolean functions

• MLPs as universal classifiers

• MLPs as universal approximators (of real-valued functions)



The MLP as a classifier
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784 dimensions  
(MNIST)

784 dimensions

2

• MLP as a function over real inputs
• MLP as a function that finds a complex “decision  boundary” over a 

space of reals



Boolean functions with a real perceptron
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• Boolean perceptrons are also linear classifiers
– Purple regions are 1

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1



Composing complicated “decision”  
boundaries
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• Build a network of units with a single output  that fires if the input is 
in the coloured area

x1

x2
Can now be composed into  “networks” to 

compute arbitrary  classification “boundaries”



Booleans over the reals
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• The network must fire if the input is in the coloured area

x1

x2

x1x2



Booleans over the reals
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• The network must fire if the input is in the coloured area

x1

x2

x1x2



Booleans over the reals
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• The network must fire if the input is in the coloured area

x1

x2

x1x2



Booleans over the reals
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• The network must fire if the input is in the coloured area

x1

x2

x1x2



Booleans over the reals
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• The network must fire if the input is in the coloured area

x1x2

x1

x2



Booleans over the reals
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• The network must fire if the input is in the coloured area

AND

y1y2y3y4y5

:
&'!

/

𝑦& ≥ 4.5

x1x2



More complex decision boundaries
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• Network to fire if the input is in the yellow area
– “OR” two polygons
– A third layer is required

x2

x1

AND AND

OR

x1x2



Complex decision boundaries

60

AND

OR

x1 x2

• Can compose arbitrarily complex decision boundaries

– With only one hidden layer!
– How?



MLP with Different Number of Layers

Structure Type of Decision 
Regions

Interpretation Example of region

Single Layer 
(no hidden layer)

Half space Region found by a 
hyper-plane

Two Layer 
(one hidden layer)

Polyhedral (open or 
closed) region

Intersection of half
spaces

Three Layer 
(two hidden layers)

Arbitrary regions Union of 
polyhedrals

MLP with unit step activation function

Decision region found by an output unit.
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Exercise: compose this with one hidden
layer

62

• How would you compose the decision boundary to the left with 
only one hidden layer?

x1x2

x2

x1



MLPs approximate functions

63

• MLP s can compose Boolean functions

• MLPs as universal classifiers

• MLPs as universal approximators (of real-valued functions)



MLP as a continuous-valued regression

64

+x

1

-𝑇"
1

T1  
-T1

T2

1

-1
x

f(x)

• A simple 3-unit MLP with a “summing” output unit can  
generate a “square pulse” over an input
– Output is 1 only if the input lies between T1 and T2

– T1 and T2 can be arbitrarily specified

T2T1



MLP as a continuous-valued regression

65

x

ℎ□

ℎ□

ℎ□

• A simple 3-unit MLP can generate a “square pulse” over an input
• An MLP with many units can model an arbitrary function over an 

input
– To arbitrary precision

• Simply make the individual pulses narrower

• A one-layer MLP can model an arbitrary function of a single input



Summary
• MLPs are universal Boolean function
• MLPs are universal classifiers
• MLPs are universal function approximators

• An MLP with two (or even one) hidden layers can 
approximate anything to arbitrary precision
• But could be exponentially or even infinitely wide in its inputs size
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How to adjust weights for multi layer 
networks?
• How can we train such multi-layer networks?
• We need to adapt all the weights, not just the last layer. 
• adapting the weights entering hidden units is equivalent to 

learning features.
• seems difficult to learn them since the target output of hidden units is 

not specified (only we access the target output of the whole 
network).

67



What we learn : The parameter of the 
network

68

• Given: the architecture of the network
• The parameters of the network: The weights and biases

– The weights associated with the blue arrows in the picture
• Learning the network: Determining the values of these parameters

such that the network computes the desired function



Training multi-layer networks

69

• Back-propagation
• Training algorithm that is used to adjust weights in multi-layer 

networks
• The backpropagation algorithm is based on gradient descent

• The direction of the most rapid decrease in the cost function

• Use chain rule to efficiently compute gradients



Find the weights by optimizing the cost 

70

• Start from random weights and then adjust them iteratively to get lower cost.

• Update the weights according to the gradient of the cost function

Source: http://3b1b.co

http://3b1b.co/


Learning problem 
• Given: the architecture of the network

• Training data: A set of input-output pairs

𝒙(#), 𝒚(#) , 𝒙(%), 𝒚(%) , … , (𝒙(&), 𝒚(&))

• We want to find the function 𝑔 on the input space to get 
the output
• We consider a neural network as a parametric function 
𝑔(𝒙;𝑾)
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Problem setup
• Given: the architecture of the network

• Training data: A set of input-output pairs
𝒙("), 𝒚(") , 𝒙($), 𝒚($) , … , (𝒙(%), 𝒚(%))

• We want to find the function 𝑓
• We consider a neural network as a parametric function 𝑔(𝒙;𝑾)

• We need a loss function to show how penalizes the obtained 
output 𝑔(𝒙;𝑾) when the desired output is 𝒚

1
𝑁
D
&'"

%

𝑙𝑜𝑠𝑠 𝑔 𝒙(&);𝑾 , 𝒚(&)
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Choosing cost function: Examples

73

• Regression problem
• SSE

• Classification problem
• Cross-entropy 𝑙𝑜𝑠𝑠' =,

12!

+
−𝑦1

' log 2𝑦1
(')

Output is found by a softmax layer 2𝑦1 =
8'(

∑()*
+ 8'(

𝐸 =,
'2!

:
𝐸'

𝐸' =,
12!

+
2𝑦1
' − 𝑦1

' $2𝑦!
2𝑦+

𝑥!

𝑥"



How to adjust weights for multi layer 
networks?

• We need multiple layers of adaptive, non-linear hidden 
units. But how can we train such nets?
• We need an efficient way of adapting all the weights, not just 

the last layer. 
• Learning the weights going into hidden units is equivalent to 

learning features.
• This is difficult because nobody is telling us directly what the 

hidden units should do.

74



Find the weights by optimizing the cost 

75

• Start from random weights and then adjust them iteratively to get lower cost.

• Update the weights according to the gradient of the cost function

Source: http://3b1b.co

http://3b1b.co/


How does the network learn?

76

• Which changes to the weights do improve the most?

• The magnitude of each element shows how sensitive the cost 
is to that weight or bias.

𝛻𝐸

𝛻𝐸

Source: http://3b1b.co

http://3b1b.co/


Training multi-layer networks
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• Back-propagation
• Training algorithm that is used to adjust weights in multi-layer 

networks (based on the training data)
• The back-propagation algorithm is based on gradient descent
• Use chain rule and dynamic programming to efficiently 

compute gradients



Training Neural Nets through Gradient 
Descent

78

Total training error:

• Gradient descent algorithm

• Initialize all weights and biases 𝑤&/
[1]

• Using the extended notation : the bias is also weight
• Do :

• For every layer 𝑘 for all 𝑖, 𝑗 update:

• 𝑤*,,
[.] = 𝑤*,,

[.] − 𝜂 $0
$10,2

[3]

• Until 𝐸 has converged

Assuming the  bias is also  
represented as a weight

𝐸 = ,
'2!

:

𝑙𝑜𝑠𝑠 2𝑦('), 𝒚(')



The derivative

79

•Computing the derivative

Total derivative:

Total training error:
𝐸 = ,

'2!

:

𝑙𝑜𝑠𝑠 2𝑦('), 𝒚(')

𝑑𝐸

𝑑𝑤,,-
[1] = ,

'2!

:
𝑑𝑙𝑜𝑠𝑠 2𝑦('), 𝒚(')

𝑑𝑤,,-
[1]



Training by gradient descent

• Initialize all weights 𝑤&/
[1]

• Do :
• For all 𝑖 , 𝑗 , 𝑘, initialize "<

"=,,.
[(] = 0

• For all 𝑛 = 1:𝑁
• For every layer 𝑘 for all 𝑖, 𝑗:

• Compute ) 4566
78 ! ,8 !

)9",$
[&]

•
):

)9",$
[&] +=

) 4566 78 ! ,8 !

)9",$
[&]

• For every layer 𝑘 for all 𝑖, 𝑗:

𝑤&,%
[,] = 𝑤&,%

[,] − ;
<

):

)9",$
[&]
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Returning to our problem

81

•How to compute 𝑑 𝑙𝑜𝑠𝑠 2𝑦, 𝒚

𝑑𝑤,,-
[1]



Training multi-layer networks

82

• Back-propagation
• Training algorithm that is used to adjust weights in multi-layer 

networks
• The backpropagation algorithm is based on gradient descent

• The direction of the most rapid decrease in the cost function

• Use chain rule to efficiently compute gradients



Simple chain rule
• 𝑧 = 𝑓 𝑔 𝑥
• 𝑦 = 𝑔(𝑥)
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Multiple paths chain rule

84



Multi-layer network

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎[3]
= 𝑓 𝑧[3]

= 𝑓 𝑊[3]𝑎[34']

= 𝑓 𝑊[3]𝑓(𝑊[34']𝑎[34(]

= 𝑓 𝑊[3]𝑓 𝑊[34']…𝑓 𝑊[(]𝑓 𝑊[']𝑥

𝑊[!] 𝑥
×

𝑓[!]𝑊["]

×

𝑓["]
𝑊[=]

×

𝑓[=]

…

𝑧[!]

𝑎[!]
𝑧["]

𝑎[=>!]
𝑧[=]

𝑎[=]
𝑎[=] = 𝑜𝑢𝑡𝑝𝑢𝑡
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Backpropagation: Notation

86

• 𝒂[(] ← 𝐼𝑛𝑝𝑢𝑡
• 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝒂[*]

𝒂[4>!] 𝒂[4]𝒛[4]



Backpropagation: Last layer gradient  

𝑎!
[#$%]

𝑧'
[(]

𝑎'
[(]

𝑓

𝑎&
[=] = 𝑓 𝑧&

[=]

𝑧%
[=] =:

&'(

.

𝑤%&
[=]𝑎&

[=>!]

For squared error loss:

𝑙𝑜𝑠𝑠 =
1
2:

%

𝑜% −𝑦%
"

𝑜% = 𝑎%
=

𝑤'!
[(]

87

𝜕𝑙𝑜𝑠𝑠
𝜕𝑎%

=

Output j

𝜕𝑙𝑜𝑠𝑠

𝜕𝑎/
3 = (𝑎/

3 − 𝑦/)

𝜕𝑙𝑜𝑠𝑠

𝜕𝑤/&
[3] = ?

𝜕𝑙𝑜𝑠𝑠
𝜕𝑤%&

[=]×

+



Backpropagation: Last layer gradient  

𝑎!
[#$%]

𝑧'
[(]

𝑎'
[(]

𝑓

𝑎%
[=] = 𝑓 𝑧%

[=]

𝑧%
[=] =:

&'(

.

𝑤%&
[=]𝑎&

[=>!]

For squared error loss:

𝑙𝑜𝑠𝑠 =
1
2:

%

𝑜% −𝑦%
"

𝑜% = 𝑎%
=

𝑤'!
[(]
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𝜕𝑙𝑜𝑠𝑠
𝜕𝑎%

=

Output j

𝜕𝑙𝑜𝑠𝑠

𝜕𝑎/
3 = (𝑎/

3 − 𝑦/)

𝜕𝑙𝑜𝑠𝑠

𝜕𝑤/&
[3] =

𝜕𝑙𝑜𝑠𝑠

𝜕𝑎/
3 𝑓5 𝑧/

[3] 𝜕𝑧/
[3]

𝜕𝑤/&
[3]

=
𝜕𝑙𝑜𝑠𝑠

𝜕𝑎/
3 𝑓5 𝑧/

[3] 𝑎&
[34']

𝜕𝑙𝑜𝑠𝑠
𝜕𝑤%&

[=]×

+



Activations and their derivatives

89

• Some popular activation functions and their derivatives

𝑓' 𝑧 = 1 − 𝑓&(𝑧)



Previous layers gradients

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑤-,
[.] =

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧-
.

𝜕𝑧-
.

𝜕𝑤-,
[.] =

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧-
. 𝑎,

[./!]

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧,
[./!] =

𝜕𝑎,
[./!]

𝜕𝑧,
[./!],

-2!

"[1]
𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧-
[.] ×

𝜕𝑧-
[.]

𝜕𝑎,
[./!]

= 𝑓> 𝑧,
[./!] ,

-2!

"[1]
𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧-
[.] ×𝑤-,

[.]
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𝑎!
[#$%]

𝑧'
[#]

𝑎'
[#]

𝑓

𝑤'!
[#]

𝑎(
[)*"]

𝑎+
[)]

𝑤%&
[4]

𝑧'
[#]

𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧%

4
𝑎%
[4] = 𝑓 𝑧%

[4]

𝑧%
[4] =:

&'(

.

𝑤%&
[4]𝑎&

[4>!]

𝜕 𝑙𝑜𝑠𝑠
𝜕𝑤%&

[4]

𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧)

[4]

𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧&

[4>!]

𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧!

[4]

×

×

+



Backpropagation: 
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𝜕 𝑙𝑜𝑠𝑠
𝜕𝑤/&

[6] =
𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧/

[6] ×
𝜕𝑧/

[6]

𝜕𝑤/&
[6]

= 𝛿/
[6]×𝑎&

[64']

𝑎&
[4>!]

𝑧%
[4]

𝑎%
[4]

𝑓𝑎%
[4] = 𝑓 𝑧%

[4]

𝑧%
[4] =:

&'(

.

𝑤%&
[4]𝑎&

[4>!]

𝑤%&
[4]



Backpropagation: 
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𝜕 𝑙𝑜𝑠𝑠
𝜕𝑤/&

[6] =
𝜕 𝑙𝑜𝑠𝑠
𝜕𝑧/

[6] ×
𝜕𝑧/

[6]

𝜕𝑤/&
[6]

= 𝛿/
[6]×𝑎&

[64']

} 𝛿-
[.] = ? .@AA

?B.
[1] is the sensitivity of the loss to 𝑧-

[.]

} Sensitivity vectors can be obtained by running a backward process in the
network architecture (hence the name backpropagation.)

𝑎&
[4>!]

𝑧%
[4]

𝑎%
[4]

𝑓𝑎%
[4] = 𝑓 𝑧%

[4]

𝑧%
[4] =:

&'(

.

𝑤%&
[4]𝑎&

[4>!]

𝑤%&
[4]

We will compute 𝜹[:&!] from 𝜹[:]:

𝛿2
[34!] = 𝑓5 𝑧2

[34!] ;
67!

$[,]

𝛿6
[3]×𝑤62

[3]



Backward process on sensitivity vectors
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• For the final layer 𝑙 = 𝐿: 

𝛿I
[K] =

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧I
[K]

• Compute 𝜹[MN"] from 𝜹[M]: by running a backward process in the 
network architecture:

𝛿O
[MN"] = 𝑓P 𝑧O

[MN"] D
I'"

Q[c]

𝛿I
[M]×𝑤IO

[M]



Backpropagation Algorithm 
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• Initialize all weights to small random numbers. 
• While not satisfied
• For each training example do: 

1. Feed forward the training example to the network and compute the 
outputs of all units in forward step (z and a) and the loss

2. For each unit find its 𝛿 in the backward step

3. Update each network weight 𝑤/&
[6] as 𝑤/&

[6] ← 𝑤/&
[6] − 𝜂 = 6>??

=@;<
[=] where = 6>??

=@;<
[=]

= 𝛿/
[6]×𝑎&

[64']



Multi-layer network: Matrix notation

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎[3]
= 𝑓 𝑧[3]

= 𝑓 𝑊[3]𝑎[34']

= 𝑓 𝑊[3]𝑓(𝑊[34']𝑎[34(]

= 𝑓 𝑊[3]𝑓 𝑊[34']…𝑓 𝑊[(]𝑓 𝑊[']𝑥

𝑊[!] 𝑥
×

𝑓[!]𝑊["]

×

𝑓["]
𝑊[=]

×

𝑓[=]

…

𝑧[!]

𝑎[!]
𝑧["]

𝑎[=>!]
𝑧[=]

𝑎[=]
𝑎[=] = 𝑜𝑢𝑡𝑝𝑢𝑡
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Multi-layer network: Matrix notation

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎[3]
= 𝑓 𝑧[3]

= 𝑓 𝑊[3]𝑎[34']

= 𝑓 𝑊[3]𝑓(𝑊[34']𝑎[34(]

= 𝑓 𝑊[3]𝑓 𝑊[34']…𝑓 𝑊[(]𝑓 𝑊[']𝑥

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑊[6] =
𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧[6]
𝑎 64' >

𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧[6]
= 𝑓′(𝑧[6])𝑊 6A' > 𝜕 𝑙𝑜𝑠𝑠

𝜕𝑧[6A']

𝑊["] 𝑥

×

𝑓["]𝑊[&]

×

𝑓[&]
𝑊[-]

×

𝑓[-]

…

𝑧["]

𝑎["]

𝑧[&]

𝑎[-*"]

𝑧[-]
𝑎[-]

𝑎[=] = 𝑜𝑢𝑡𝑝𝑢𝑡
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Mini-batch gradient descent
• Large datasets
• Divide dataset into smaller batches containing one subset of 

the main training set
• Weights are updated after seeing training data in each of these 

batches 
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Gradient descent methods

Batch 1
𝑋 ! , 𝑌{!}

Batch 2
𝑋 " , 𝑌{"}

Batch m
𝑋 E , 𝑌{E}

Batch size=1 Batch size=n
(the size of training set)

Batch gradient Stochastic gradient  Stochastic mini-batch gradient 

e.g., Batch size= 32, 64, 128, 256

n: whole no of training data
bs: the size of batches  
𝑚 = F

G6
: the number of batches 
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Mini-batch gradient descent
For epoch=1,…,k

1. For t=1,…,m

1. Forward propagation on 𝑋{9}

2. 𝐽{9} = !
=
∑>∈@A9BC. 𝐿 F𝑌>

9 , 𝑌>
9 + 𝜆𝑅(𝑊)

3. Backpropagation on 𝐽{9} to compute gradients 𝑑𝑊
4. For 𝑙 = 1, … , 𝐿

1. 𝑊[4] = 𝑊[4] − 𝛼𝑑𝑊[4]

𝐴[(] = 𝑋{H}
1. For 𝑙 = 1,… , 𝐿

1. 𝑍 3 = 𝑊[3]𝐴 34!

2. 𝐴[3] = 𝑓 3 𝑍 3

k𝑌F
H = 𝐴F

=

1 epoch:
Single pass 
over all 
training
samples

Batch 1
𝑋 ! , 𝑌{!}

Batch 2
𝑋 " , 𝑌{"}

Batch m
𝑋 E , 𝑌{E}

Vectorized computaion
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Training issues
• The backpropagation algorithm is an efficient way of 

computing the derivative of the cost function w.r.t. each 
of the weights

• However, many issues must be considered to have 
successful training:
• Optimization issues
• Generalization issues
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Generalization techniques  
• Regularization or weight-decay
• Hyper-parameter tuning
• Weight-sharing
• e.g., CNNs

• Model ensemble
• Pre-training
• Data augmentation
• Dropout 
• Batch Normalization
• …
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Hyperparameter tuning of NNs

102

• Architecture
• Type of layers
• Activation functions
• Number of layers
• Number of hidden units in each layer
• …

• Optimization
• Optimizer
• Batch size
• Learning rate
• …



Generalization

103
# epochs

co
st

𝐽C: Overfitting

𝐽DEF,'

𝐽C: good generalization



Regularization

𝐽 𝑊 =
1
𝑁
9
+,#

&

𝐿 + (𝑊) + 𝜆𝑅 𝑊

• 𝑅 𝑊 : is defined based on the norm of the weights 
vectors

• Example: 𝑅 𝑊 = ∑* ∑+,-𝑤+-
* .
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Hyper-parameter tuning: Example 
Number of Hidden Units

105

• Shows the expressive power the network
• Can specify the total numbers of weights that are the number of freedom degree

• Select among networks with different no. of hidden units by training 
these networks and then evaluating them on a validation set
• For large networks and large training set, it is inefficient.

training error

validation error

Number of 
hidden units

error

5 10 15 20 25 30 35 40



Deep Learning
• Learning a computational models consists of multiple 

processing layers  
• learn representations of data with multiple levels of 

abstraction.

• Dramatically improved the state-of-the-art in many 
speech, vision and NLP tasks (and also in many other 
domains) 
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Machine Learning Methods
• Conventional machine learning methods:
• try to learn the mapping from the input features to the output 

by samples 
• However, they need appropriately designed hand-designed 

features

Hand-designed 
feature extraction Classifier OutputInput

Learned using 
training samples
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Example
• 𝑥#: intensity
• 𝑥%: symmetry

[Abu Mostafa, 2012]
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Representation of Data
• Performance of traditional learning methods depends 

heavily on the representation of the data. 
• Most efforts were on designing proper features

• However, designing hand-crafted features for inputs like 
image, videos, time series, and sequences is not trivial at all.
• It is difficult to know which features should be extracted.

• Sometimes, it needs long time for a community of experts to find (an 
incomplete and over-specified) set of these features.
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Representation Learning

• Using learning to discover both:
• the representation of data from input features
• and the mapping from representation to output

Trainable feature 
extractor Trainable classifier OutputInput

End-to-end 
learning
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Deep Learning Approach
• Deep breaks the desired complicated mapping into a 

series of nested simple mappings
• each mapping described by a layer of the model.
• each layer extracts features from output of previous layer 

• shows impressive performance on many Artificial 
Intelligence tasks

Trainable feature 
extractor
(layer n)

Trainable classifier OutputInput
Trainable feature 

extractor
(layer 1)

…

Trainable feature 
extractor
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[Deep Learning book]
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Deep Representations:
The Power of Compositionality
• Compositionality is useful to describe the world efficiently
• Learned function seen as a composition of simpler operations
• Hierarchy of features, concepts, leading to more abstract 

factors enabling better generalization
• each concept defined in relation to simpler concepts
• more abstract representations computed in terms of less abstract 

ones.

• Again, theory shows this can be exponentially advantageous

• Deep learning has great power and flexibility by learning 
to represent the world as a nested hierarchy of concepts

This slide has been adopted from  Yoshua Bengio’s slides113



Deep learning
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• Use networks with many layers

• A single hidden layer with enough units can approximate any 
target network
• More layers more closely mimics human learning
• We may need far less number of nodes when we use deep networks  

• A hierarchy of internal representations for the input.
• The first layer constructs a low-level representation; 
• More complex representations in terms of simpler representation of the 

previous layer



Boolean functions
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• Input: N Boolean variable
• How many neurons in a one hidden layer MLP is 

required? 
• More compact representation of a Boolean function 
• “Karnaugh Map” 

• representing the truth table as a grid 
• Grouping adjacent boxes to reduce the complexity of the Disjunctive 

Normal Form (DNF) formula

1 1 1 1

1 1

1 1

𝑋, 𝑌
𝑊, 𝑍 00 01 10 11

00
01
10
11



Worst case
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• Which truth tables cannot be reduced further simply? 

• Largest width needed for a single-layer Boolean network 
on N inputs
• Worst case:  2!"#

• Example: Parity function

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

𝑋, 𝑌
𝑊, 𝑍 00 01 1011

00
01

10

11

𝑋 ⊕ 𝑌⊕ 𝑍⊕𝑊



Using deep network: Parity function on N inputs
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• Simple MLP with one hidden layer:

• 𝑓 = 𝑋#⊕𝑋%⊕⋯⊕𝑋&

𝑋! 𝑋$

𝑋*

𝑋6

3(𝑁 − 1) Hidden nodes

9(𝑁 − 1)Weights and biases

2U4' Hidden units

(𝑁 + 2)2U4'Weights and biases



A better architecture
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• Only requires 2log𝑁 layers

• 𝑓 = 𝑋#⊕𝑋% ⊕ 𝑋-⊕𝑋. ⊕ E
F

𝑋.⊕𝑋/
⊕ 𝑋0⊕𝑋1

𝑋! 𝑋$ 𝑋* 𝑋6 𝑋7 𝑋G 𝑋H 𝑋I



Boolean function: Wide vs. deep network
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• MLP with a single hidden layer is a universal Boolean 
function

• However, a single-layer network might need an 
exponential number of hidden units w.r.t. the number of 
inputs

• Deeper networks may require far fewer neurons than the 
single hidden layer network
• Linear w.r.t. the number of inputs when that is deep enough



Why does deep learning become popular?

• Data: Large datasets

• Hardware: Availability of the 
computational resources to run much 
larger models

• Algorithm
• New training techniques
• New models
• Frameworks
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# training 
samples

ac
cu

ra
cy

Deep model

Simple model



Deep learning architectures
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• Fully connected
• Convolutional Neural Networks (CNNs)
• Recurrent Neural Networks (RNNs)
• Transformers



A problem of fully connected layers

• Is MLP proper for classifying images in which objects may have 
different locations?
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The need for shift invariance

• In many problems the location of a pattern is not important
• Only the presence of the pattern

• MLPs are sensitive to the location of the pattern

• Requirement:  Network must be shift invariant

123

=



• Locality and weight sharing
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convolution

fully connected

[Goodfellow et al. 2016]

Convolutional layers



Convolutional filter

3x3 filter

7x7 input
Source: 

http://iamaaditya.github.io/2016/03/o
ne-by-one-convolution/

5x5 output

Gives the responses of that 
filter at every spatial 

position
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http://iamaaditya.github.io/2016/03/one-by-one-convolution/


What is a convolution?

• Scanning an image with a “filter”
• At each location, the “filter and the underlying map values are 

multiplied component wise, and the products are added along with 
the bias
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1 0 1
0 1 0

11 0

Input 
Map

Filte
r

0

bias



Convolutional Neural Network (CNN)
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Fully connected 
layers

Convolutional layers

Input Output



Summary
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• Neural nets are universal approximators
• Backpropagation is a training algorithm for neural nets
• Training issues must be considered 
• Optimization and generalization issues 

• Convolutional layers as an example of inductive biases 
that improve generalization are introduced.


